Chordal Graphs are Fully Orientable
نویسندگان
چکیده
Suppose that D is an acyclic orientation of a graph G. An arc of D is called dependent if its reversal creates a directed cycle. Let dmin(G) (dmax(G)) denote the minimum (maximum) of the number of dependent arcs over all acyclic orientations of G. We call G fully orientable if G has an acyclic orientation with exactly d dependent arcs for every d satisfying dmin(G) 6 d 6 dmax(G). A graph G is called chordal if every cycle in G of length at least four has a chord. We show that all chordal graphs are fully orientable. Keyword: acyclic orientation; full orientability; simplicial vertex; chordal graph. ∗The corresponding author
منابع مشابه
Complement of Special Chordal Graphs and Vertex Decomposability
In this paper, we introduce a subclass of chordal graphs which contains $d$-trees and show that their complement are vertex decomposable and so is shellable and sequentially Cohen-Macaulay.
متن کامل1-perfectly Orientable Graphs and Graph Products
A graph G is said to be 1-perfectly orientable (1-p.o. for short) if it admits an orientation such that the out-neighborhood of every vertex is a clique in G. The class of 1-p.o. graphs forms a common generalization of the classes of chordal and circular arc graphs. Even though 1-p.o. graphs can be recognized in polynomial time, no structural characterization of 1-p.o. graphs is known. In this ...
متن کاملA Clique Tree Algorithm for Partitioning a Chordal Graph into Transitive Subgraphs
A partitioning problem on chordal graphs that arises in the solution of sparse triangular systems of equations on parallel computers is considered Roughly the problem is to partition a chordal graph G into the fewest transitively orientable subgraphs over all perfect elimination orderings of G subject to a certain precedence relationship on its vertices In earlier work a greedy scheme that solv...
متن کاملPartial Characterizations of 1-Perfectly Orientable Graphs
We study the class of 1-perfectly orientable (1-p.o.) graphs, that is, graphs having an orientation in which every out-neighborhood induces a tournament. 1-p.o. graphs form a common generalization of chordal graphs and circular arc graphs. Even though 1-p.o. graphs can be recognized in polynomial time, little is known about their structure. In this paper, we prove several structural results abo...
متن کاملA Simple Competitive Graph Coloring Algorithm
We prove that the game coloring number, and therefore the game chromatic number, of a planar graph is at most 18. This is a slight improvement of the current upper bound of 19. Perhaps more importantly, we bound the game coloring number of a graph G in terms of a new parameter r(G). We use this result to give very easy proofs of the best known upper bounds on game coloring number for forests, i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ars Comb.
دوره 122 شماره
صفحات -
تاریخ انتشار 2015